Abstract 3-Rigidity and Bivariate Splines

Bill Jackson
School of Mathematical Sciences
Queen Mary, University of London
England

Circle Packings and Geometric Rigidity ICERM July 6-10, 2020

Matroids

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and $|A|<|B|$ then there exists $x \in B \backslash A$ such that $A+x \in \mathcal{I}$.

Matroids

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and $|A|<|B|$ then there exists $x \in B \backslash A$ such that $A+x \in \mathcal{I}$.
$A \subseteq E$ is independent if $A \in \mathcal{I}$ and A is dependent if $A \notin \mathcal{I}$. The minimal dependent sets of \mathcal{M} are the circuits of \mathcal{M}. The rank of $A, r(A)$, is the cardinality of a maximal independent subset of A. The rank of \mathcal{M} is the cardinality of a maximal independent subset of E.

Matroids

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I}$;
- if $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and $|A|<|B|$ then there exists $x \in B \backslash A$ such that $A+x \in \mathcal{I}$.
$A \subseteq E$ is independent if $A \in \mathcal{I}$ and A is dependent if $A \notin \mathcal{I}$. The minimal dependent sets of \mathcal{M} are the circuits of \mathcal{M}. The rank of $A, r(A)$, is the cardinality of a maximal independent subset of A. The rank of \mathcal{M} is the cardinality of a maximal independent subset of E.

The weak order on a set S of matroids with the same groundset is defined as follows. Given two matroids $\mathcal{M}_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ in S, we say $\mathcal{M}_{1} \preceq M_{2}$ if $\mathcal{I}_{1} \subseteq \mathcal{I}_{2}$.

The generic d-dimensional rigidity matroid

A d-dimensional framework (G, p) is a graph $G=(V, E)$ together with a map $p: V \rightarrow \mathbb{R}^{d}$.

A d-dimensional framework (G, p) is a graph $G=(V, E)$ together with a map $p: V \rightarrow \mathbb{R}^{d}$.
The rigidity matrix of (G, p) is the matrix $R(G, p)$ of size
$|E| \times d|V|$ in which the row associated with the edge $v_{i} v_{j}$ is

$$
v_{i} v_{j}\left[\begin{array}{llllll}
0 \ldots 0 & p\left(v_{i}\right)^{v_{i}}-p\left(v_{j}\right) & 0 \ldots 0 & p\left(v_{j}\right)^{v_{j}}-p\left(v_{i}\right) & 0 \ldots 0
\end{array}\right] .
$$

A dimensional framework (G, p) is a graph $G=(V, E)$ together with a map $p: V \rightarrow \mathbb{R}^{d}$.
The rigidity matrix of (G, p) is the matrix $R(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $v_{i} v_{j}$ is

$$
v_{i} v_{j}\left[\begin{array}{llllll}
0 \ldots 0 & p\left(v_{i}\right)^{v_{i}}-p\left(v_{j}\right) & 0 \ldots 0 & p\left(v_{j}\right)-p\left(v_{i}\right) & 0 \ldots 0
\end{array}\right]
$$

The generic d-dimensional rigidity matroid $\mathcal{R}_{n, d}$ is the row matroid of the rigidity matrix $R\left(K_{n}, p\right)$ for any generic $p: V\left(K_{n}\right) \rightarrow \mathbb{R}^{d}$.

The generic d-dimensional rigidity matroid

A dimensional framework (G, p) is a graph $G=(V, E)$ together with a map $p: V \rightarrow \mathbb{R}^{d}$.
The rigidity matrix of (G, p) is the matrix $R(G, p)$ of size
$|E| \times d|V|$ in which the row associated with the edge $v_{i} v_{j}$ is

$$
v_{i} v_{j}\left[\begin{array}{lllll}
0 \ldots 0 & p\left(v_{i}\right)-p\left(v_{j}\right) & 0 \ldots 0 & p\left(v_{j}\right)-p\left(v_{i}\right) & 0 \ldots 0
\end{array}\right] .
$$

The generic d-dimensional rigidity matroid $\mathcal{R}_{n, d}$ is the row matroid of the rigidity matrix $R\left(K_{n}, p\right)$ for any generic $p: V\left(K_{n}\right) \rightarrow \mathbb{R}^{d}$.
$\mathcal{R}_{n, d}$ is a matroid with groundset $E\left(K_{n}\right)$ and rank $d n-\binom{d+1}{2}$. Its rank function has been determined (by good characterisations and polynomial algorithms) when $d=1,2$.
Determining its rank function for $d \geq 3$ is a long standing open problem.

Abstract d-rigidity matroids

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d, n}$ and used them to define the family of abstract d-rigidity matroids on $E\left(K_{n}\right)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an abstract d-rigidity matroid iff rank $\mathcal{M}=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M}.

Abstract d-rigidity matroids

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d, n}$ and used them to define the family of abstract d-rigidity matroids on $E\left(K_{n}\right)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an abstract d-rigidity matroid iff rank $\mathcal{M}=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M}.

Conjecture [Graver, 1991]

For all $d, n \geq 1, \mathcal{R}_{d, n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E\left(K_{n}\right)$.

Abstract d-rigidity matroids

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d, n}$ and used them to define the family of abstract d-rigidity matroids on $E\left(K_{n}\right)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an abstract d-rigidity matroid iff rank $\mathcal{M}=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M}.

Conjecture [Graver, 1991]

For all $d, n \geq 1, \mathcal{R}_{d, n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E\left(K_{n}\right)$.

Graver verified his conjecture for $d=1,2$.

Abstract d-rigidity matroids

Jack Graver (1991) chose two closure properties of $\mathcal{R}_{d, n}$ and used them to define the family of abstract d-rigidity matroids on $E\left(K_{n}\right)$. Viet Hang Nguyen (2010) gave the following equivalent definition: \mathcal{M} is an abstract d-rigidity matroid iff rank $\mathcal{M}=d n-\binom{d+1}{2}$, and every $K_{d+2} \subseteq K_{n}$ is a circuit in \mathcal{M}.

Conjecture [Graver, 1991]

For all $d, n \geq 1, \mathcal{R}_{d, n}$ is the unique maximal element in the family of all abstract d-rigidity matroids on $E\left(K_{n}\right)$.

Graver verified his conjecture for $d=1,2$.
Walter Whiteley (1996) gave counterexamples to Graver's conjecture for all $d \geq 4$ and $n \geq d+2$ using 'cofactor matroids'.

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f: D \rightarrow \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f: D \rightarrow \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

- The set $S_{s}^{k}(\Delta)$ of (s, k)-splines over Δ forms a vector space.
- Obtaining tight upper/lower bounds on $\operatorname{dim} S_{s}^{k}(\Delta)$ (over a given class of subdivisions Δ) is an important problem in approximation theory.

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f: D \rightarrow \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

- The set $S_{s}^{k}(\Delta)$ of (s, k)-splines over Δ forms a vector space.
- Obtaining tight upper/lower bounds on $\operatorname{dim} S_{s}^{k}(\Delta)$ (over a given class of subdivisions Δ) is an important problem in approximation theory.
- Whiteley (1990) observed that $\operatorname{dim} S_{s}^{k}(\Delta)$ can be calculated from the rank of a matrix $C_{s}^{k}(G, p)$ which is determined by the the 1 -skeleton (G, p) of the subdivision Δ (viewed as a 2-dim framework), and that rigidity theory can be used to investigate the rank of this matrix.
- His definition of $C_{s}^{k}(G, p)$ makes sense for all 2-dim frameworks (not just frameworks whose underlying graph is planar).

Cofactor matroids

Let (G, p) be a 2-dimensional framework and put $p\left(v_{i}\right)=\left(x_{i}, y_{i}\right)$ for $v_{i} \in V(G)$. For $v_{i} v_{j} \in E(G)$ and $d \geq 1$ let

$$
D_{d}\left(v_{i}, v_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{d-1},\left(x_{i}-x_{j}\right)^{d-2}\left(y_{i}-y_{j}\right), \ldots,\left(y_{i}-y_{j}\right)^{d-1}\right)
$$

Cofactor matroids

Let (G, p) be a 2-dimensional framework and put $p\left(v_{i}\right)=\left(x_{i}, y_{i}\right)$ for $v_{i} \in V(G)$. For $v_{i} v_{j} \in E(G)$ and $d \geq 1$ let

$$
D_{d}\left(v_{i}, v_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{d-1},\left(x_{i}-x_{j}\right)^{d-2}\left(y_{i}-y_{j}\right), \ldots,\left(y_{i}-y_{j}\right)^{d-1}\right)
$$

The C_{d-1}^{d-2}-cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated $\underset{v_{i}}{\text { with }}$ the edge $v_{i} v_{j}$ is

$$
v_{i} v_{j}\left[\begin{array}{lllll}
0 \ldots 0 & D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0 & -D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0
\end{array}\right] .
$$

Cofactor matroids

Let (G, p) be a 2-dimensional framework and put $p\left(v_{i}\right)=\left(x_{i}, y_{i}\right)$ for $v_{i} \in V(G)$. For $v_{i} v_{j} \in E(G)$ and $d \geq 1$ let

$$
D_{d}\left(v_{i}, v_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{d-1},\left(x_{i}-x_{j}\right)^{d-2}\left(y_{i}-y_{j}\right), \ldots,\left(y_{i}-y_{j}\right)^{d-1}\right) .
$$

The C_{d-1}^{d-2}-cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated $\underset{v_{i}}{\text { with }}$ the edge $v_{i} v_{j}$ is

$$
v_{i} v_{j}\left[\begin{array}{llllll}
0 \ldots 0 & D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0 & -D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0
\end{array}\right] .
$$

The generic C_{d-1}^{d-2}-cofactor matroid, $\mathcal{C}_{d-1, n}^{d-2}$ is the row matroid of the cofactor matrix $C_{d-1}^{d-2}\left(K_{n}, p\right)$ for any generic $p: V\left(K_{n}\right) \rightarrow \mathbb{R}^{2}$.

Cofactor matroids

Let (G, p) be a 2-dimensional framework and put $p\left(v_{i}\right)=\left(x_{i}, y_{i}\right)$ for $v_{i} \in V(G)$. For $v_{i} v_{j} \in E(G)$ and $d \geq 1$ let

$$
D_{d}\left(v_{i}, v_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{d-1},\left(x_{i}-x_{j}\right)^{d-2}\left(y_{i}-y_{j}\right), \ldots,\left(y_{i}-y_{j}\right)^{d-1}\right)
$$

The C_{d-1}^{d-2}-cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which ${ }_{v_{i}}$, row associated $\underset{v_{j}}{\text { with }}$ the edge $v_{i} v_{j}$ is

$$
v_{i} v_{j}\left[\begin{array}{llllll}
0 \ldots 0 & D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0 & -D_{d}\left(v_{i}, v_{j}\right) & 0 \ldots 0
\end{array}\right] .
$$

The generic C_{d-1}^{d-2}-cofactor matroid, $\mathcal{C}_{d-1, n}^{d-2}$ is the row matroid of the cofactor matrix $C_{d-1}^{d-2}\left(K_{n}, p\right)$ for any generic $p: V\left(K_{n}\right) \rightarrow \mathbb{R}^{2}$. $\mathcal{C}_{d-1, n}^{d-2}$ is a matroid with groundset $E\left(K_{n}\right)$ and rank $d n-\binom{d+1}{2}$.

Cofactor matroids - Whiteley's Results and Conjectures

Theorem [Whiteley]

- $\mathcal{C}_{d-1, n}^{d-2}$ is an abstract d-rigidity matroid for all $d, n \geq 1$.
- $\mathcal{C}_{d-1, n}^{d-2}=\mathcal{R}_{d, n}$ for $d=1,2$.
- $\mathcal{C}_{d-1, n}^{d-2} \npreceq \mathcal{R}_{d, n}$ when $d \geq 4$ and $n \geq 2(d+2)$ since $K_{d+2, d+2}$ is independent in $\mathcal{C}_{d-1, n}^{d-2}$ and dependent in $\mathcal{R}_{d, n}$.

Cofactor matroids - Whiteley's Results and Conjectures

Theorem [Whiteley]

- $\mathcal{C}_{d-1, n}^{d-2}$ is an abstract d-rigidity matroid for all $d, n \geq 1$.
- $\mathcal{C}_{d-1, n}^{d-2}=\mathcal{R}_{d, n}$ for $d=1,2$.
- $\mathcal{C}_{d-1, n}^{d-2} \npreceq \mathcal{R}_{d, n}$ when $d \geq 4$ and $n \geq 2(d+2)$ since $K_{d+2, d+2}$ is independent in $\mathcal{C}_{d-1, n}^{d-2}$ and dependent in $\mathcal{R}_{d, n}$.

Conjecture [Whiteley, 1996]

For all $d, n \geq 1, \mathcal{C}_{d-1, n}^{d-2}$ is the unique maximal abstract d-rigidity matroid on $E\left(K_{n}\right)$.

Cofactor matroids - Whiteley's Results and Conjectures

Theorem [Whiteley]

- $\mathcal{C}_{d-1, n}^{d-2}$ is an abstract d-rigidity matroid for all $d, n \geq 1$.
- $\mathcal{C}_{d-1, n}^{d-2}=\mathcal{R}_{d, n}$ for $d=1,2$.
- $\mathcal{C}_{d-1, n}^{d-2} \npreceq \mathcal{R}_{d, n}$ when $d \geq 4$ and $n \geq 2(d+2)$ since $K_{d+2, d+2}$ is independent in $\mathcal{C}_{d-1, n}^{d-2}$ and dependent in $\mathcal{R}_{d, n}$.

Conjecture [Whiteley, 1996]

For all $d, n \geq 1, \mathcal{C}_{d-1, n}^{d-2}$ is the unique maximal abstract d-rigidity matroid on $E\left(K_{n}\right)$.

Conjecture [Whiteley, 1996]
For all $n \geq 1, \mathcal{C}_{2, n}^{1}=\mathcal{R}_{3, n}$.

The maximal abstract 3-rigidity matroid
Theorem [Clinch, BJ, Tanigawa 2019+]
$\mathcal{C}_{2, n}^{1}$ is the unique maximal abstract 3 -rigidity matroid on $E\left(K_{n}\right)$.

The maximal abstract 3-rigidity matroid

Theorem [Clinch, BJ, Tanigawa 2019+]

$\mathcal{C}_{2, n}^{1}$ is the unique maximal abstract 3-rigidity matroid on $E\left(K_{n}\right)$.
Sketch Proof Suppose \mathcal{M} is an abstract 3-rigidity matroid on $E\left(K_{n}\right)$ and $F \subseteq E\left(K_{n}\right)$ is independent in M. We show that F is independent in $\mathcal{C}_{2, n}^{1}$ by induction on $|F|$. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F|=r(F) \leq 3|V(F)|-6$ and hence F has a vertex v with $d_{F}(v) \leq 5$.

The maximal abstract 3-rigidity matroid

Theorem [Clinch, BJ, Tanigawa 2019+]

$\mathcal{C}_{2, n}^{1}$ is the unique maximal abstract 3 -rigidity matroid on $E\left(K_{n}\right)$.
Sketch Proof Suppose \mathcal{M} is an abstract 3-rigidity matroid on $E\left(K_{n}\right)$ and $F \subseteq E\left(K_{n}\right)$ is independent in M. We show that F is independent in $\mathcal{C}_{2, n}^{1}$ by induction on $|F|$. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F|=r(F) \leq 3|V(F)|-6$ and hence F has a vertex v with $d_{F}(v) \leq 5$.

$$
\text { Case 1: } d_{F}(v) \leq 3
$$

independent in \mathcal{M}

$\xrightarrow{\text { axiom }}$

The maximal abstract 3-rigidity matroid

Theorem [Clinch, BJ, Tanigawa 2019+]

$\mathcal{C}_{3, n}^{2}$ is the unique maximal abstract d-rigidity matroid on $E\left(K_{n}\right)$.
Sketch Proof Suppose \mathcal{M} is an abstract rigidity matroid on $E\left(K_{n}\right)$ and $F \subseteq E\left(K_{n}\right)$ is independent in M. We show that F is independent in $\mathcal{C}_{2, n}^{1}$ by induction on $|F|$. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F|=r(F) \leq 3|V(F)|-6$ and hence F has a vertex v with $d_{F}(v) \leq 5$.

$$
\text { Case 2: } d_{F}(v)=4
$$

independent in \mathcal{M}

independent in \mathcal{M}
independent in $C_{2, n}^{1}$

independent in $C_{2, n}^{1}$

The maximal abstract 3-rigidity matroid
Case 3: $d_{F}(v)=5$

The rank function of $\mathcal{C}_{2, n}^{1}$

A K_{5}-sequence in K_{n} is a sequence of subgraphs $\left(K_{5}^{1}, K_{5}^{2}, \ldots, K_{5}^{t}\right)$ each of which is isomorphic to K_{5}.
It is proper if $K_{5}^{i} \nsubseteq \bigcup_{j=1}^{i-1} K_{5}^{j}$ for all $2 \leq i \leq t$.

A K_{5}-sequence in K_{n} is a sequence of subgraphs $\left(K_{5}^{1}, K_{5}^{2}, \ldots, K_{5}^{t}\right)$ each of which is isomorphic to K_{5}.
It is proper if $K_{5}^{i} \nsubseteq \bigcup_{j=1}^{i-1} K_{5}^{j}$ for all $2 \leq i \leq t$.

Theorem [Clinch, BJ, Tanigawa 2019+]

The rank of any $F \subseteq E\left(K_{n}\right)$ in $\mathcal{C}_{2, n}^{1}$ is given by

$$
r(F)=\min \left\{\left|F_{0}\right|+\left|\bigcup_{i=1}^{t} E\left(K_{5}^{i}\right)\right|-t\right\}
$$

where the minimum is taken over all $F_{0} \subseteq F$ and all proper K_{5}-sequences $\left(K_{5}^{1}, K_{5}^{2}, \ldots, K_{5}^{t}\right)$ in K_{n} which cover $F \backslash F_{0}$.

Example

Let $F_{0}=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left(K_{5}^{1}, K_{5}^{2}, \ldots, K_{5}^{7}\right)$ be the 'obvious' proper K_{5}-sequence which covers $F \backslash F_{0}$. We have $|F|=60$ and

$$
r(F) \leq\left|F_{0}\right|+\left|\bigcup_{i=1}^{7} E\left(K_{5}^{i}\right)\right|-7=59
$$

so F is not independent in $\mathcal{C}_{2, n}^{1}$. Since $3|V(F)|-6=60, F$ is not rigid in any abstract 3-rigidity matroid.

Application

Theorem [Clinch, BJ, Tanigawa 2019+]

Every 12-connected graph is rigid in the maximal abstract 3 -rigidity matroid $C_{2, n}^{1}$.

Application

Theorem [Clinch, BJ, Tanigawa 2019+]

Every 12-connected graph is rigid in the maximal abstract 3-rigidity matroid $C_{2, n}^{1}$.

Lovász and Yemini (1982) conjectured that the analogous result holds for the generic 3-dimensional rigidity matroid. Examples constructed by Lovász and Yemini show that the connectivity hypothesis in the above theorem is best possible.

Open Problems

> Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

Open Problems

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

Problem 2 Find a polynomial algorithm for determining the rank function of $\mathcal{C}_{2, n}^{1}$.

Open Problems

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

Problem 2 Find a polynomial algorithm for determining the rank function of $\mathcal{C}_{2, n}^{1}$.
Problem 3 Determine whether the following function $\rho_{d}: 2^{E\left(K_{n}\right)} \rightarrow \mathbb{Z}$ is submodular.

$$
\rho_{d}(F)=\min \left\{\left|F_{0}\right|+\left|\bigcup_{i=1}^{t} E\left(K_{d+2}^{i}\right)\right|-t\right\}
$$

where the minimum is taken over all $F_{0} \subseteq F$ and all proper K_{d+2}-sequences $\left(K_{d+2}^{1}, K_{d+2}^{2}, \ldots, K_{d+2}^{t}\right)$ in K_{n} which cover $F \backslash F_{0}$. An affirmative answer would tell us that there is a unique maximal abstract d-rigidity matroid and ρ_{d} is its rank function.

Preprints

K. Clinch, B. Jackson and S. Tanigawa, Abstract 3-rigidity and bivariate C_{2}^{1}-splines I: Whiteley's maximality conjecture, preprint available at https://arxiv.org/abs/1911. 00205.
K. Clinch, B. Jackson and S. Tanigawa, Abstract 3-rigidity and bivariate C_{2}^{1}-splines II: Combinatorial Characterization, preprint available at https://arxiv.org/abs/1911.00207.

