Abstract 3-Rigidity and Bivariate Splines

Bill Jackson School of Mathematical Sciences Queen Mary, University of London England

Circle Packings and Geometric Rigidity ICERM July 6 - 10, 2020

Bill Jackson Abstract 3-Rigidity and Bivariate Splines

Matroids

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I};$
- if $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

・ロト ・回ト ・ヨト ・ヨト

Matroids

A matroid \mathcal{M} is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I};$
- if $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$. The minimal dependent sets of \mathcal{M} are the **circuits** of \mathcal{M} . The **rank** of A, r(A), is the cardinality of a maximal independent subset of A. The **rank** of \mathcal{M} is the cardinality of a maximal independent subset of E.

・ロット (四) (日) (日)

Matroids

A matroid M is a pair (E, \mathcal{I}) where E is a finite set and \mathcal{I} is a family of subsets of E satisfying:

- $\emptyset \in \mathcal{I};$
- if $B \in \mathcal{I}$ and $A \subseteq B$ then $A \in \mathcal{I}$;
- if $A, B \in \mathcal{I}$ and |A| < |B| then there exists $x \in B \setminus A$ such that $A + x \in \mathcal{I}$.

 $A \subseteq E$ is **independent** if $A \in \mathcal{I}$ and A is **dependent** if $A \notin \mathcal{I}$. The minimal dependent sets of \mathcal{M} are the **circuits** of \mathcal{M} . The **rank** of A, r(A), is the cardinality of a maximal independent subset of A. The **rank** of \mathcal{M} is the cardinality of a maximal independent subset of E.

The **weak order** on a set *S* of matroids with the same groundset is defined as follows. Given two matroids $\mathcal{M}_1 = (E, \mathcal{I}_1)$ and $\mathcal{M}_2 = (E, \mathcal{I}_2)$ in *S*, we say $\mathcal{M}_1 \preceq \mathcal{M}_2$ if $\mathcal{I}_1 \subseteq \mathcal{I}_2$.

・ロッ ・回 ・ ・ 回 ・ ・ 日 ・

The generic *d*-dimensional rigidity matroid

A *d*-dimensional framework (G, p) is a graph G = (V, E) together with a map $p : V \to \mathbb{R}^d$.

<ロ> < 回 > < 回 > < 三 > < 三 > <

The generic *d*-dimensional rigidity matroid

A *d*-dimensional framework (G, p) is a graph G = (V, E)together with a map $p : V \to \mathbb{R}^d$. The **rigidity matrix** of (G, p) is the matrix R(G, p) of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is $v_i v_i [0...0 p(v_i) - p(v_i) 0...0 p(v_j) - p(v_i) 0...0].$

イロト イヨト イヨト イヨト

A *d*-dimensional framework (G, p) is a graph G = (V, E)together with a map $p : V \to \mathbb{R}^d$. The **rigidity matrix** of (G, p) is the matrix R(G, p) of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is $v_i v_j [0...0 p(v_i) - p(v_j) 0...0 p(v_j) - p(v_i) 0...0]$. The generic *d*-dimensional rigidity matroid $\mathcal{R}_{n,d}$ is the row matroid of the rigidity matrix $R(K_n, p)$ for any generic $p : V(K_n) \to \mathbb{R}^d$.

イロト イヨト イヨト イヨト

A *d*-dimensional framework (G, p) is a graph G = (V, E)together with a map $p: V \to \mathbb{R}^d$. The **rigidity matrix** of (G, p) is the matrix R(G, p) of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_i$ is $v_i v_j [0...0 p(v_i) - p(v_j) 0...0 p(v_j) - p(v_i) 0...0].$ The generic *d*-dimensional rigidity matroid $\mathcal{R}_{n,d}$ is the row matroid of the rigidity matrix $R(K_n, p)$ for any generic $p: V(K_n) \to \mathbb{R}^d$. $\mathcal{R}_{n,d}$ is a matroid with groundset $E(K_n)$ and rank $dn - \binom{d+1}{2}$.

Its rank function has been determined (by good characterisations and polynomial algorithms) when d = 1, 2. Determining its rank function for $d \ge 3$ is a long standing open problem.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Conjecture [Graver, 1991]

For all $d, n \ge 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract *d*-rigidity matroids on $E(K_n)$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Conjecture [Graver, 1991]

For all $d, n \ge 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract *d*-rigidity matroids on $E(K_n)$.

Graver verified his conjecture for d = 1, 2.

・ロン ・回 と ・目 ・ ・ ヨ ・

Conjecture [Graver, 1991]

For all $d, n \ge 1$, $\mathcal{R}_{d,n}$ is the unique maximal element in the family of all abstract *d*-rigidity matroids on $E(K_n)$.

Graver verified his conjecture for d = 1, 2.

Walter Whiteley (1996) gave counterexamples to Graver's conjecture for all $d \ge 4$ and $n \ge d + 2$ using 'cofactor matroids'.

・ロッ ・回 ・ ・ 回 ・ ・ 日 ・

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f: D \to \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

イロト イヨト イヨト イヨト

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f: D \to \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

- The set $S_s^k(\Delta)$ of (s, k)-splines over Δ forms a vector space.
- Obtaining tight upper/lower bounds on dim S^k_s(Δ) (over a given class of subdivisions Δ) is an important problem in approximation theory.

・ロト ・回ト ・ヨト ・ヨト

Bivariate Splines and Cofactor Matrices

Given a polygonal subdivision Δ of a polygonal domain D in the plane, a bivariate function $f: D \to \mathbb{R}$ is an (s, k)-spline over Δ if it is defined as a polynomial of degree s on each face of Δ and is continuously differentiable k times on D.

- The set $S_s^k(\Delta)$ of (s, k)-splines over Δ forms a vector space.
- Obtaining tight upper/lower bounds on dim S^k_s(Δ) (over a given class of subdivisions Δ) is an important problem in approximation theory.
- Whiteley (1990) observed that dim S^k_s(Δ) can be calculated from the rank of a matrix C^k_s(G, p) which is determined by the the 1-skeleton (G, p) of the subdivision Δ (viewed as a 2-dim framework), and that rigidity theory can be used to investigate the rank of this matrix.
- His definition of C^k_s(G, p) makes sense for all 2-dim frameworks (not just frameworks whose underlying graph is planar).

Cofactor matroids

Let (G, p) be a 2-dimensional framework and put $p(v_i) = (x_i, y_i)$ for $v_i \in V(G)$. For $v_i v_j \in E(G)$ and $d \ge 1$ let $D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \dots, (y_i - y_j)^{d-1}).$

イロン 不同 とくほど 不同 とう

Let (G, p) be a 2-dimensional framework and put $p(v_i) = (x_i, y_i)$ for $v_i \in V(G)$. For $v_i v_j \in E(G)$ and $d \ge 1$ let $D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \dots, (y_i - y_j)^{d-1})$. The C_{d-1}^{d-2} -cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is $v_i v_j \begin{bmatrix} 0 \dots 0 & D_d(v_i, v_j) & 0 \dots 0 & -D_d(v_i, v_j) & 0 \dots 0 \end{bmatrix}$.

Let (G, p) be a 2-dimensional framework and put $p(v_i) = (x_i, y_i)$ for $v_i \in V(G)$. For $v_i v_j \in E(G)$ and $d \ge 1$ let $D_d(v_i, v_j) = ((x_i - x_j)^{d-1}, (x_i - x_j)^{d-2}(y_i - y_j), \dots, (y_i - y_j)^{d-1})$. The C_{d-1}^{d-2} -cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is $v_i v_j \begin{bmatrix} 0 \dots 0 & D_d(v_i, v_j) & 0 \dots 0 & -D_d(v_i, v_j) & 0 \dots 0 \end{bmatrix}$. The generic C_{d-1}^{d-2} -cofactor matroid, $C_{d-1,n}^{d-2}$ is the row matroid of the cofactor matrix $C_{d-1}^{d-2}(K_n, p)$ for any generic $p : V(K_n) \to \mathbb{R}^2$.

イロト イヨト イヨト イヨト

Let (G, p) be a 2-dimensional framework and put $p(v_i) = (x_i, y_i)$ for $v_i \in V(G)$. For $v_i v_i \in E(G)$ and $d \ge 1$ let $D_d(v_i, v_i) = ((x_i - x_i)^{d-1}, (x_i - x_i)^{d-2}(y_i - y_i), \dots, (y_i - y_i)^{d-1}).$ The C_{d-1}^{d-2} -cofactor matrix of (G, p) is the matrix $C_{d-1}^{d-2}(G, p)$ of size $|E| \times d|V|$ in which the row associated with the edge $v_i v_j$ is $v_i v_i = [0...0 \quad D_d(v_i, v_i) \quad 0...0 \quad -D_d(v_i, v_i) \quad 0...0 |.$ The generic C_{d-1}^{d-2} -cofactor matroid, $C_{d-1,n}^{d-2}$ is the row matroid of the cofactor matrix $C_{d-1}^{d-2}(K_n, p)$ for any generic $p: V(K_n) \to \mathbb{R}^2$. $\mathcal{C}_{d-1,n}^{d-2}$ is a matroid with groundset $E(K_n)$ and rank $dn - \binom{d+1}{2}$.

イロト イヨト イヨト イヨト

Cofactor matroids - Whiteley's Results and Conjectures

Theorem [Whiteley]

•
$$C^{d-2}_{d-1,n}$$
 is an abstract *d*-rigidity matroid for all $d, n \ge 1$.

•
$$C_{d-1,n}^{d-2} = \mathcal{R}_{d,n}$$
 for $d = 1, 2$.

•
$$C_{d-1,n}^{d-2} \not\preceq \mathcal{R}_{d,n}$$
 when $d \ge 4$ and $n \ge 2(d+2)$ since $K_{d+2,d+2}$ is independent in $C_{d-1,n}^{d-2}$ and dependent in $\mathcal{R}_{d,n}$.

Theorem [Whiteley]

•
$$\mathcal{C}^{d-2}_{d-1,n}$$
 is an abstract *d*-rigidity matroid for all $d, n \geq 1$.

•
$$C_{d-1,n}^{d-2} = \mathcal{R}_{d,n}$$
 for $d = 1, 2$.

•
$$C_{d-1,n}^{d-2} \not\preceq \mathcal{R}_{d,n}$$
 when $d \ge 4$ and $n \ge 2(d+2)$ since $K_{d+2,d+2}$ is independent in $C_{d-1,n}^{d-2}$ and dependent in $\mathcal{R}_{d,n}$.

Conjecture [Whiteley, 1996]

For all $d, n \ge 1$, $C_{d-1,n}^{d-2}$ is the unique maximal abstract *d*-rigidity matroid on $E(K_n)$.

・日・ ・ヨ・ ・ヨ・

Theorem [Whiteley]

•
$$\mathcal{C}^{d-2}_{d-1,n}$$
 is an abstract d -rigidity matroid for all $d,n\geq 1$.

•
$$C_{d-1,n}^{d-2} = \mathcal{R}_{d,n}$$
 for $d = 1, 2$.

•
$$C_{d-1,n}^{d-2} \not\preceq \mathcal{R}_{d,n}$$
 when $d \ge 4$ and $n \ge 2(d+2)$ since $K_{d+2,d+2}$ is independent in $C_{d-1,n}^{d-2}$ and dependent in $\mathcal{R}_{d,n}$.

Conjecture [Whiteley, 1996]

For all $d, n \ge 1$, $C_{d-1,n}^{d-2}$ is the unique maximal abstract *d*-rigidity matroid on $E(K_n)$.

Conjecture [Whiteley, 1996]

For all
$$n \geq 1$$
, $\mathcal{C}^1_{2,n} = \mathcal{R}_{3,n}$.

・ロト ・回 ト ・ヨト ・ヨト

E

The maximal abstract 3-rigidity matroid

Theorem [Clinch, BJ, Tanigawa 2019+]

 $C_{2,n}^1$ is the unique maximal abstract 3-rigidity matroid on $E(K_n)$.

・ロト ・日ト ・ヨト ・ヨト

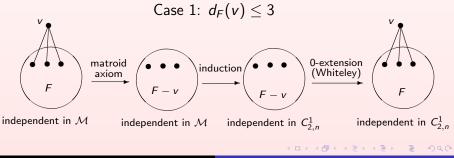
 $C_{2,n}^1$ is the unique maximal abstract 3-rigidity matroid on $E(K_n)$.

Sketch Proof Suppose \mathcal{M} is an abstract 3-rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in \mathcal{M} . We show that F is independent in $\mathcal{C}_{2,n}^1$ by induction on |F|. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$.

・ロト ・日ト ・ヨト ・ヨト

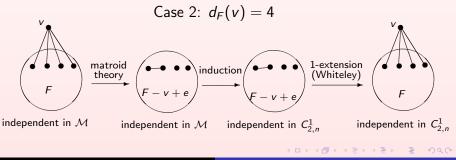
 $C_{2,n}^1$ is the unique maximal abstract 3-rigidity matroid on $E(K_n)$.

Sketch Proof Suppose \mathcal{M} is an abstract 3-rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in \mathcal{M} . We show that F is independent in $\mathcal{C}_{2,n}^1$ by induction on |F|. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$.



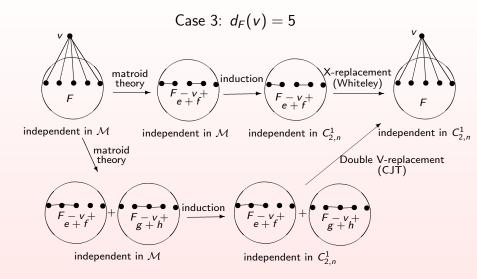
 $C_{3,n}^2$ is the unique maximal abstract *d*-rigidity matroid on $E(K_n)$.

Sketch Proof Suppose \mathcal{M} is an abstract rigidity matroid on $E(K_n)$ and $F \subseteq E(K_n)$ is independent in \mathcal{M} . We show that F is independent in $\mathcal{C}_{2,n}^1$ by induction on |F|. Since \mathcal{M} is an abstract 3-rigidity matroid, $|F| = r(F) \leq 3|V(F)| - 6$ and hence F has a vertex v with $d_F(v) \leq 5$.



Bill Jackson Abstract 3-Rigidity and Bivariate Splines

The maximal abstract 3-rigidity matroid



イロン 不同 とくほど 不同 とう

A K_5 -sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^t)$ each of which is isomorphic to K_5 . It is proper if $K_5^i \not\subseteq \bigcup_{i=1}^{i-1} K_5^i$ for all $2 \le i \le t$.

イロト イヨト イヨト イヨト

A K_5 -sequence in K_n is a sequence of subgraphs $(K_5^1, K_5^2, \ldots, K_5^t)$ each of which is isomorphic to K_5 . It is proper if $K_5^i \not\subseteq \bigcup_{i=1}^{i-1} K_5^i$ for all $2 \le i \le t$.

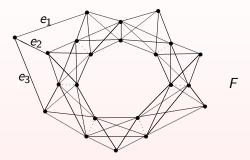
Theorem [Clinch, BJ, Tanigawa 2019+]

The rank of any $F \subseteq E(K_n)$ in $\mathcal{C}^1_{2,n}$ is given by

$$r(F) = \min\left\{ |F_0| + \left| \bigcup_{i=1}^t E(K_5^i) \right| - t \right\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper K_5 -sequences $(K_5^1, K_5^2, \ldots, K_5^t)$ in K_n which cover $F \setminus F_0$.

イロト イヨト イヨト イヨト



Let $F_0 = \{e_1, e_2, e_3\}$ and $(K_5^1, K_5^2, \dots, K_5^7)$ be the 'obvious' proper K_5 -sequence which covers $F \setminus F_0$. We have |F| = 60 and $r(F) \le |F_0| + \left| \bigcup_{i=1}^7 E(K_5^i) \right| - 7 = 59$

so F is not independent in $C_{2,n}^1$. Since 3|V(F)| - 6 = 60, F is not rigid in any abstract 3-rigidity matroid.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Every 12-connected graph is rigid in the maximal abstract 3-rigidity matroid $C_{2,n}^1$.

・ロト ・回ト ・ヨト ・ヨト

Every 12-connected graph is rigid in the maximal abstract 3-rigidity matroid $C_{2,n}^1$.

Lovász and Yemini (1982) conjectured that the analogous result holds for the generic 3-dimensional rigidity matroid. Examples constructed by Lovász and Yemini show that the connectivity hypothesis in the above theorem is best possible.

Open Problems

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

(a)

Open Problems

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

Problem 2 Find a polynomial algorithm for determining the rank function of $C_{2,n}^1$.

Open Problems

Problem 1 Determine whether the X-replacement operation preserves independence in the generic 3-dimensional rigidity matroid (Tay and Whiteley, 1985).

Problem 2 Find a polynomial algorithm for determining the rank function of $C_{2,n}^1$.

Problem 3 Determine whether the following function $\rho_d: 2^{E(K_n)} \to \mathbb{Z}$ is submodular.

$$\rho_d(F) = \min\left\{ |F_0| + \left| \bigcup_{i=1}^t E(K_{d+2}^i) \right| - t \right\}$$

where the minimum is taken over all $F_0 \subseteq F$ and all proper K_{d+2} -sequences $(K_{d+2}^1, K_{d+2}^2, \ldots, K_{d+2}^t)$ in K_n which cover $F \setminus F_0$. An affirmative answer would tell us that there is a unique maximal abstract *d*-rigidity matroid and ρ_d is its rank function.

ゆう 人 思 と 人 思 と 人 肥

- K. Clinch, B. Jackson and S. Tanigawa, Abstract 3-rigidity and bivariate C_2^1 -splines I: Whiteley's maximality conjecture, preprint available at https://arxiv.org/abs/1911.00205.
- K. Clinch, B. Jackson and S. Tanigawa, Abstract 3-rigidity and bivariate C_2^1 -splines II: Combinatorial Characterization, preprint available at https://arxiv.org/abs/1911.00207.

(4月) キョン キョン